

Relationships between clouds, SST & circulation over the tropical oceans

Mark Ringer

Contents

- Interannual variability of cloud radiative forcing in the tropics
- Relationships to variations in SST and large-scale circulation
- Variations in the tropical mean cloud radiative forcing

Interannual variability of cloud radiative forcing in the tropics

Derived from monthly mean anomalies of ISCCP-FD data: 1984 – 2004

SW

NET

-30 1 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004

Relationships to SST and circulation

© Crown copyright Met Office

Variations in the tropical mean CRF

Tropical Mean NET CRF

- Analogous to Bony et al (2004), Yuan et al (2008) construct time series of ω -SST CRF distributions
- Components of tropical mean CRF anomaly due to
 - changes in CRF within the ω-SST bins
 - changes in the populations of the ω -SST bins

Tropical Mean Net Cloud Forcing - ISCCP-FD

Component of CRF related to tropical mean anomaly in SST (Wm⁻² K⁻¹)

NET		LW	SW	
ISCCP	2.7 ± 0.1	2	2.2	0.5
ERBE	2.3 ± 0.1	2	2.0	0.3
MEAN	2.5 ± 0.1	2	2.1	0.4
HadCM3	2.7 ± 0.1	1	l . 9	0.9
HadGEM1	2.8 ± 0.1	3	3.1	-0.3

- Net warming response of clouds to tropical mean SST anomaly
- Remainder is due to local effects
- Could be used to evaluate climate models?
- Might be relevant to cloud feedbacks?

Summary

- Largest interannual variability in NET CRF occurs in areas of low cloud – consistency between ISCCP-FD, ERBE & CERES
- Variability in CRF is related to both largescale and local changes in SST/circulation
- Variability in low cloud areas seems to be primarily related to local SST changes
- It may be possible to determine a component of the tropical mean CRF variability that depends on the tropical mean SST change

Recap: definition of CRF

To a first approximation:

$$CSW = A_{C} (S_{clear} - S_{cloudy})$$

$$CLW = A_{C} \cdot (F_{clear} - F_{cloudy})$$

To first order N = CSW/CLW is independent of cloud amount A_c (Cess et al 2001)

ΔCSW/ΔCLW ~ N suggests cloud amount variations as primary driver of those in SW and LW CRF